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Abstract— In Dynamic Wireless Power Transfer, the 

embedment of power transmission coils in the road surface is 
essential. Previous studies have reported that coil characteristics 
deteriorate during embedment in reinforced concrete pavement 
due to the effects of rebar and concrete. In this paper, precast 
reinforced concrete pavement slabs employing insulated steel bars 
were used to simulate the embedment of coils in the pavement, and 
the coil properties due to the embedment were measured. An 
embedment method using polyurea resin is proposed to reduce the 
effect of concrete on the coil properties. The results of the 
embedment simulation test showed that the use of polyurea resin 
successfully improved the Q-value of the coil by about 85 % 
compared to the case where concrete was used. Furthermore, the 
transmission characteristics were evaluated using a vector 
network analyzer (VNA), and a transmission efficiency of 95.8 % 
was obtained over a transmission distance of 170 mm. 

 

Keywords—Dynamic Wireless Power Transfer, Reinforced 
Concrete, Coil embedment, Resin pavement materials 

 

I. INTRODUCTION  

The global trend toward decarbonization has made the 
transition from gasoline and diesel vehicles to electric vehicles 
(EVs) a priority worldwide. However, EVs have a short cruising 
range, lack of charging infrastructure, heavy battery weight and 
high cost, and other issues that have slowed the spread of EVs. 

DWPT (Dynamic Wireless Power Transfer) is one way to solve 
these problems and is being actively researched [1]-[6]. 

For the practical application of DWPT, it is essential to bury 
the transmission coils in the road. However, it has been reported 
that burying the coils causes a decrease in electrical and 
transmission characteristics such as the internal resistance and 
Q-value of the coils due to the influence of the surrounding 
environment such as rebar, concrete, and asphalt [7]-[16]. In this 
paper, we focus on the embedment about reinforced concrete 
pavement and propose an embedment method using resin 
pavement material in reinforced concrete pavement slabs 
employing insulated steel bars as a method to reduce the 
deterioration of coil embedment characteristics. The use of resin 
pavement material can be expected to reduce the impact of 
concrete and increase the waterproofing effect and pavement 
strength.  

In Japan, asphalt pavements account for about 95 %, in the 
US and EU about 80 %, and in Korea about 40 %, with 
reinforced concrete pavements accounting for the remaining 
percentage. In Japan, the percentage of reinforced concrete 
pavements is small. However, in Japan, reinforced concrete 
pavements are used on rural trunk roads, metropolitan 



expressways, bridges, and tunnels, which are important for 
logistics and transportation. For practical use, it is essential to 
study not only embedment in asphalt pavements, but also in 
reinforced concrete pavements. Furthermore, compared to 
asphalt pavements, reinforced concrete pavements have 
received renewed attention in recent years because of their 
durability, water resistance, earthquake resistance, and lower 
maintenance and repair costs, and the percentage of 
implementation is likely to increase in the future.  

Therefore, this paper examines methods of reducing property 
deterioration and improving transmission efficiency in 
reinforced concrete pavement slabs employing insulated steel 
bars by using resin pavement material to simulate buried 
measurements.  

 

II. RESIN SELECTION TEST 

A. Resin Embedment Test 

In this proposal, we conducted tests to select the resin to be 
used. 

As shown in Fig. 1, six turns, 300 × 300 mm coils were buried 
in a 350 × 350 × 50 mm resin block, and the electrical 
characteristics of the coils were measured before and after burial 
to confirm which resin had the least influence on the coil 
characteristics. Candidate resins were 

(a) Epoxy Resin 1  

(b) Epoxy Resin 2  

(c) MMA Resin 1  

(d) MMA Resin 2  

(e) Polyurea Resin  

Each resin is used for concrete repair. In addition, differences 
in aggregate and other materials exist among similar resins. 

The embedment tests were conducted on these five types.The 
results of the embedment tests are shown in Fig. 2. 

The results in Fig. 2 show that Polyurea Resin is the resin that 
has the least influence on coil properties.  

 

 
(a) Epoxy Resin 1  

 
(b) Epoxy Resin 2  

 
(c) MMA Resin 1  

 
(d) MMA Resin 2  

 
(e) Polyurea Resin  

Fig. 1. Coils embeded each resin. 



 
(a) Results of Q Value. 

  
(b) Results of Resistance. 

Fig. 2.  Results of electrical characteristics before and after 
embedment. 
 

B. Confirmation of adhesion between concrete and resin 

In this test, the adhesion between concrete and resin was 
verified. When resin is used in actual pavement, a layer of resin 
exists on top of concrete as shown in Fig. 3. If the adhesion 
between the resin and concrete is not sufficient, the resin may 
peel off or the pavement may be damaged when the vehicle runs 
on it. 

As shown in Fig. 4, a 10 mm layer of resin was created on a 
300 × 300 × 50 mm concrete block, and the resin layer was 
subjected to a tensile test to confirm adhesion. Tensile tests were 
conducted until the resin layer was peeled away from the 
concrete, and the results were checked to see if they exceeded 
the standard value of 1.5 N/mm2 for use in pavements. The 
results are shown in Fig. 5. 

The results in Fig. 5 show that all resins exceeded the standard 
value. However, the small value for the polyurea resin is due to 
the incompatibility of the resin and adhesive, and the test may 
not have been conducted accurately. However, since this resin is 
used in actual pavements, there should be no problem in its use. 
Based on these results, the resin used was decided to be polyurea. 

 
Fig. 3.  Completion diagram when put into practical use. 

 
Fig. 4.  Confirmation of adhesion between resin and 
concrete. 

 
Fig. 5. Results of Confirmation of adhesion between resin 
and concrete. 
 

III. BLOCK EMBEDMENT SIMULATION EXPERIMENT 

A. About Precast Rebar Concrete and Embedment Coils 

Fig. 6 shows the reinforced concrete specimen used in this 
measurement. The dimensions of the specimen are 2000 × 1180 
× 295 mm, with a box-cut portion 2000 × 980 × 120 mm on the 
specimen. The boxed-out area was defined as the area where the 
coil of precast RC slab would be embedded during the actual 
embedment. The distance from the rebar to the bottom of the 
box-cut is 30 mm. The rebar is a double-lattice structure. 

Insulated rebars were used for the rebars of the PRC slab. The 
insulated rebar is realized by wrapping the intersections of the 
rebars with a double layer of soft polyvinyl chloride tape. (Fig. 
7) 
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Fig. 6. Schematic diagram of Precast Rebar Concrete. 

 
Fig. 7. Insulated Rebar 

 
Fig. 8. Embedment coils and Receiver coil 

(Left: Case coil, Center: Direct embedment coil, Right: 
Receiver coil) 

 

The coil used for the measurement is shown in Fig. 8. A case 
coil is made by constructing the coil in a case and laying down 
ferrite. A direct embedment coil is a coil that is not in a case and 
has bare litz wire, and does not use a large plastic case, which is 
expected to increase pavement strength and reduce costs. The 
Litz wire for both the transmitter and receiver coils has 1000 
strands with a wire diameter of 0.05 mm, and the direct 
embedment coils are covered with 0.5 mm thick FEP. 

Each coil parameter is shown in Table1. Table2 shows the 
electrical characteristics before burial, and Fig.9 shows the 
measured scenery. 

Table. 1. Each parameter of the coils 
 Case coil Direct 

embedment 
coil 

Receiver 
coil 

Coil size 1300×600 
mm 

1300×600 
mm 

580×420 
mm 

Coil holder 
size 

1600×750
×35 mm 

- 800×550
×35 mm 

Number of 
turns 7 7 16 

Line pitch 10.85 mm 10.85 mm 10.85 mm 
Wire diameter 5 mm 5 mm 5 mm 

 
Table. 2. Electrical characteristics in pre-embedment. 

 Frequency 
[kHz] R [Ω] L [µH] Q Value 

Case coil 85 0.056 129.4 1224 
Direct 

embedment 
coil 

85 0.073 94.45 689 

Receiver coil 85 0.054 148.1 1454 
 

 
Fig. 9. Measurements Pre-embedment. 

 

B. Experimenntal Method 

The purpose of this experiment was to confirm the electrical 
characteristics and transmission efficiency of the coils by 
simulating the conditions under which power transmission coils 
would be buried in reinforced concrete pavement and making 
measurements under such conditions. 

The concrete and resin blocks and coils were stacked on the 
specimen in Fig. 6 to simulate embedment in a reinforced 
concrete pavement. Fig. 10 shows a schematic diagram of the 
measurement.  

For Fig. 10, measurements were made on a reinforced 
concrete plate, adjusted using concrete and resin blocks to 
achieve the following five patterns. 

(ⅰ) x=80 mm, y=0 mm   (ⅱ) x=60 mm, y=20 mm 

(ⅲ) x=40 mm, y=40 mm     (ⅳ) x=20 mm, y=60 mm 

(ⅴ) x=0 mm, y=80 mm 

 

1180 mm

295 mm
980 mm

120 mm

30 mm

Rebar

Box Removal

Transmission coil

VNA



 
(a) Concrete Blocks. 

 
(b) Resin Blocks. 

Fig. 10.  Schematic diagram of the measurement. 

 
Fig. 11.  Scenes of characteristic measurement. 

The electrical characteristics of the buried coil under these 
conditions were measured using an impedance analyzer. 

A schematic diagram of the transmission efficiency 
measurements is shown in Fig.10. In Fig.10, the measurements 
were made by fixing x=20 mm and varying the value of y in the 
following five patterns.  

(ⅰ) y=0 mm (ⅱ) y=20 mm (ⅲ) y=40 mm (ⅳ) y=60 mm 

(ⅴ) y=80 mm 

The VNA is a small-signal input device, and the input voltage 
at the VNA was set to 600 V, the resonance frequency was 
adjusted to 85 kHz using a resonance capacitor, the load Fig. 11 
shows the measurement scenery. 

In these measurements, two types of blocks were used: 
concrete blocks and resin blocks. 

C. Results of Block Embedment Simulation Experiments 

Fig. 12 shows the measurement results of electrical 
characteristics using an impedance analyzer and Fig. 13 shows 

the measurement results of transmission efficiency using a 
vector network analyzer for the buried simulation test using 
concrete and resin blocks.  

Fig. 12 shows that the resistance and Q values of the case coil 
changed by a factor of 4.32 and 0.22, respectively, before and 
after embedment, while the resistance and Q values of the direct 
embedment coil changed by a factor of 3.29 and 0.34, 
respectively, confirming the deterioration of the characteristics 
due to embedment.  

In addition, by using polyurea resin (Ninja Seal), the method 
proposed in this paper, instead of concrete for the cased coil, the 
Q value was improved by about 85% and the resistance was 
successfully reduced by about 0.52 times at y=80 mm. In direct 
embedment coils, compared to case coils, the litz wire is in direct 
contact with the pavement material, resulting in a greater 
deterioration of the properties during embedment. However, the 
use of direct embedment coils can be expected to decrease costs, 
so we believe that improvements in coil design are needed. 

As shown in Fig. 13, the maximum transmission efficiency 
of 95.8% was obtained for the cased coil and 93.2% for the 
direct embedment coil by using resin blocks. Changing the 
pavement material from concrete to resin improved the 
transmission efficiency by about 2.3%. 

 
(a) Relation between y (distance from the bottom) and Q. 

 
(b) Relation between y (distance from the bottom) and R. 

Fig. 12.  Electrical characteristic results. 
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Fig. 13.  Transmission efficiency results. 

From these results, values suitable for practical use were 
obtained for both case coil, and the deterioration of coil 
characteristics due to resin was successfully reduced. Although 
there is a great merit in using resin for pavement, there is an issue 
of how much the amount of resin used can be reduced due to the 
large amount and high cost of resin used. We plan to verify these 
issues in the future.  

 

IV. CONCLUSION 

In this paper, we propose a method of reducing property 
deterioration in coil embedment in reinforced concrete 
pavement by using resin pavement material, and verify it by 
conducting measurements using a reinforced concrete plate. As 
a result, the resistance and Q-value were improved by 0.52 and 
85 %, respectively, by using the resin pavement material. 
Furthermore, a transmission efficiency of 95.8% was obtained 
at a transmission distance of 170 mm, and the use of insulated 
steel bars successfully increased the efficiency by approximately 
2.3%. 

Future studies will be conducted under the condition of direct 
burial, which is similar to actual reinforced concrete pavement. 
In addition, the effect of water due to rain, etc., and heat 
generation when high power is applied will also be verified in 
consideration of practical use.  
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